Mechanism Design with Correlated Information

Sushil Bikhchandani

Workshop on Mechanism Design
I.S.I. Delhi

August 4, 2015

Optimal mechanism design

Optimal mechanism design

When bidder information is correlated

- There exists a mechanism that is efficient and leaves bidders with zero expected surplus
- Full-surplus extraction

Symmetric Model with Correlated Information

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- For simplicity, assume $n=2$ and that bidders are symmetric
- Bidder i 's valuation is V_{i},

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- For simplicity, assume $n=2$ and that bidders are symmetric
- Bidder i's valuation is V_{i}, information signal is X_{i}

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- For simplicity, assume $n=2$ and that bidders are symmetric
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Each X_{i} takes values in a finite number $X,|X|=m$

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- For simplicity, assume $n=2$ and that bidders are symmetric
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Each X_{i} takes values in a finite number $X,|X|=m$
- i's exp. valuation, $v_{i}\left(X_{i}, X_{j}\right)$, is a function of signals X_{i}, X_{j}

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- For simplicity, assume $n=2$ and that bidders are symmetric
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Each X_{i} takes values in a finite number $X,|X|=m$
- i's exp. valuation, $v_{i}\left(X_{i}, X_{j}\right)$, is a function of signals X_{i}, X_{j}
- Joint probability distribution P over $\left(X_{1}, X_{2}\right)$

Symmetric Model with Correlated Information

- Single indivisible object
- n risk-neutral buyers or bidders, $i=1,2, \ldots, n$
- For simplicity, assume $n=2$ and that bidders are symmetric
- Bidder i's valuation is V_{i}, information signal is X_{i}
- Each X_{i} takes values in a finite number $X,|X|=m$
- i's exp. valuation, $v_{i}\left(X_{i}, X_{j}\right)$, is a function of signals X_{i}, X_{j}
- Joint probability distribution P over $\left(X_{1}, X_{2}\right)$
- All this is common knowledge

Model (continued)

- From P define a matrix of conditional probabilities, P_{1}
- P_{1} is a $m \times m$ matrix with elements $\operatorname{Pr}\left(x_{2} \mid x_{1}\right), x_{1}, x_{2} \in X$
- Each row of P_{1} is a conditional probability distribution of X_{2} given X_{1}
- P_{2} is similarly defined

Model (continued)

- From P define a matrix of conditional probabilities, P_{1}
- P_{1} is a $m \times m$ matrix with elements $\operatorname{Pr}\left(x_{2} \mid x_{1}\right), x_{1}, x_{2} \in X$
- Each row of P_{1} is a conditional probability distribution of X_{2} given X_{1}
- P_{2} is similarly defined
- Assumption: P_{1} and P_{2} are full-rank matrices
- Assumption: Single-crossing condition is satisfied

The optimal mechanism

$u_{1}\left(x_{1}\right) \equiv$ buyer 1's expected surplus in second-price auction when $X_{1}=x_{1}$

The optimal mechanism

$u_{1}\left(x_{1}\right) \equiv$ buyer 1 's expected surplus in second-price auction when $X_{1}=x_{1}$
Let \mathbf{u}_{1} be an m vector of the $u_{1}\left(x_{1}\right)$'s.

The optimal mechanism

$u_{1}\left(x_{1}\right) \equiv$ buyer 1 's expected surplus in second-price auction when $X_{1}=x_{1}$
Let \mathbf{u}_{1} be an m vector of the $u_{1}\left(x_{1}\right)$'s.

As P_{1} has full rank, there exists a m vector \mathbf{c}_{1} such that

$$
P_{1} \mathbf{c}_{\mathbf{1}}=\mathbf{u}_{\mathbf{1}}
$$

The optimal mechanism

$u_{1}\left(x_{1}\right) \equiv$ buyer 1 's expected surplus in second-price auction when $X_{1}=x_{1}$
Let \mathbf{u}_{1} be an m vector of the $u_{1}\left(x_{1}\right)$'s.

As P_{1} has full rank, there exists a m vector \mathbf{c}_{1} such that

$$
P_{1} \mathbf{c}_{\mathbf{1}}=\mathbf{u}_{1}
$$

That is, for all $x_{1} \in \mathrm{X}$,

$$
\sum_{x_{2} \in X} \operatorname{Pr}\left(x_{2} \mid x_{1}\right) c_{1}\left(x_{2}\right)=u_{1}\left(x_{1}\right)
$$

The optimal mechanism

$u_{1}\left(x_{1}\right) \equiv$ buyer 1 's expected surplus in second-price auction when $X_{1}=x_{1}$
Let \mathbf{u}_{1} be an m vector of the $u_{1}\left(x_{1}\right)$'s.

As P_{1} has full rank, there exists a m vector \mathbf{c}_{1} such that

$$
P_{1} \mathbf{c}_{\mathbf{1}}=\mathbf{u}_{1}
$$

That is, for all $x_{1} \in X$,

$$
\sum_{x_{2} \in X} \operatorname{Pr}\left(x_{2} \mid x_{1}\right) c_{1}\left(x_{2}\right)=u_{1}\left(x_{1}\right)
$$

$\mathbf{c}_{\mathbf{2}}$ is defined similarly

The optimal mechanism

A second-price auction plus the payments $\mathbf{c}_{\boldsymbol{i}}$ is an optimal mechanism maximizes efficiency and revenue

The optimal mechanism

A second-price auction plus the payments $\mathbf{c}_{\boldsymbol{i}}$ is an optimal mechanism maximizes efficiency and revenue

It is incentive compatible because $\mathbf{c}_{\boldsymbol{1}}$ does not depend on x_{1} and $\mathbf{c}_{\mathbf{2}}$ does not depend on x_{2}

The optimal mechanism

A second-price auction plus the payments $\mathbf{c}_{\boldsymbol{i}}$ is an optimal mechanism maximizes efficiency and revenue

It is incentive compatible because $\mathbf{c}_{\boldsymbol{1}}$ does not depend on x_{1} and $\mathbf{c}_{\mathbf{2}}$ does not depend on x_{2}

It is efficient as single-crossing is satisfied

The optimal mechanism

A second-price auction plus the payments $\mathbf{c}_{\boldsymbol{i}}$ is an optimal mechanism maximizes efficiency and revenue

It is incentive compatible because $\mathbf{c}_{\boldsymbol{1}}$ does not depend on x_{1} and $\mathbf{c}_{\mathbf{2}}$ does not depend on x_{2}

It is efficient as single-crossing is satisfied
It is revenue-maximizing because buyer expected surplus is zero:

The optimal mechanism

A second-price auction plus the payments $\mathbf{c}_{\boldsymbol{i}}$ is an optimal mechanism maximizes efficiency and revenue

It is incentive compatible because $\mathbf{c}_{\mathbf{1}}$ does not depend on x_{1} and $\mathbf{c}_{\mathbf{2}}$ does not depend on x_{2}

It is efficient as single-crossing is satisfied
It is revenue-maximizing because buyer expected surplus is zero:
At $X_{1}=x_{1}$, for any $x_{1} \in X$, buyer 1 's expected surplus is

$$
u_{1}\left(x_{1}\right)-\sum_{x_{2} \in X} \operatorname{Pr}\left(x_{2} \mid x_{1}\right) c_{1}\left(x_{2}\right)=u_{1}\left(x_{1}\right)-u_{1}\left(x_{1}\right)=0
$$

Example

Two buyers with types $X_{1}, X_{2} \in\{0,1\}$ and values $V_{i}=X_{i}$.

Example

Two buyers with types $X_{1}, X_{2} \in\{0,1\}$ and values $V_{i}=X_{i}$.

$$
P=\left[\begin{array}{ll}
\operatorname{Pr}(0,0) & \operatorname{Pr}(0,1) \\
\operatorname{Pr}(1,0) & \operatorname{Pr}(1,1)
\end{array}\right]=\left[\begin{array}{ll}
0.375 & 0.125 \\
0.125 & 0.375
\end{array}\right]
$$

Example

Two buyers with types $X_{1}, X_{2} \in\{0,1\}$ and values $V_{i}=X_{i}$.

$$
\begin{gathered}
P=\left[\begin{array}{ll}
\operatorname{Pr}(0,0) & \operatorname{Pr}(0,1) \\
\operatorname{Pr}(1,0) & \operatorname{Pr}(1,1)
\end{array}\right]=\left[\begin{array}{ll}
0.375 & 0.125 \\
0.125 & 0.375
\end{array}\right] \\
P_{i}=\left[\begin{array}{ll}
\operatorname{Pr}(0 \mid 0) & \operatorname{Pr}(0 \mid 1) \\
\operatorname{Pr}(1 \mid 0) & \operatorname{Pr}(1 \mid 1)
\end{array}\right]=\left[\begin{array}{ll}
0.75 & 0.25 \\
0.25 & 0.75
\end{array}\right]
\end{gathered}
$$

Example

Efficient allocation rule: $Q\left(X_{1}, X_{2}\right)=($ prob 1 gets it, prob 2 gets it)

$$
Q\left(X_{1}, X_{2}\right)=\left[\begin{array}{cc}
(0,0) & (0,1) \\
(1,0) & (0.5,0.5)
\end{array}\right]
$$

Example

Efficient allocation rule: $Q\left(X_{1}, X_{2}\right)=$ (prob 1 gets it, prob 2 gets it)

$$
Q\left(X_{1}, X_{2}\right)=\left[\begin{array}{cc}
(0,0) & (0,1) \\
(1,0) & (0.5,0.5)
\end{array}\right]
$$

Buyer's exp. surplus in second-price auction: $\mathbf{u}_{\mathbf{i}}=(0,0.25)$

Example

Efficient allocation rule: $Q\left(X_{1}, X_{2}\right)=($ prob 1 gets it, prob 2 gets it)

$$
Q\left(X_{1}, X_{2}\right)=\left[\begin{array}{cc}
(0,0) & (0,1) \\
(1,0) & (0.5,0.5)
\end{array}\right]
$$

Buyer's exp. surplus in second-price auction: $\mathbf{u}_{\mathbf{i}}=(0,0.25)$
Select $\mathbf{c}_{\mathbf{i}}=(-0.125,0.375)$.

Example

Efficient allocation rule: $Q\left(X_{1}, X_{2}\right)=($ prob 1 gets it, prob 2 gets it)

$$
Q\left(X_{1}, X_{2}\right)=\left[\begin{array}{cc}
(0,0) & (0,1) \\
(1,0) & (0.5,0.5)
\end{array}\right]
$$

Buyer's exp. surplus in second-price auction: $\mathbf{u}_{\mathbf{i}}=(0,0.25)$
Select $\mathbf{c}_{\mathbf{i}}=(-0.125,0.375)$.

$$
\mathbf{u}_{\mathbf{i}}-P_{i} \mathbf{c}_{\mathbf{i}}=\binom{0-[(0.75)(-0.125)+(0.25)(0.375)]}{0.25-[(0.25)(-0.125)+(0.75)(0.375)]}=\binom{0}{0}
$$

Caveats

The optimal mechanism is

- Is not detail free
- Not ex post individually rational
- Does not work with limited liability

