Mechanism Design with Correlated Information

Sushil Bikhchandani

Workshop on Mechanism Design

I.S.I. Delhi

August 4, 2015

Optimal mechanism design

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Optimal mechanism design

When bidder information is correlated

- There exists a mechanism that is efficient and leaves bidders with zero expected surplus
- Full-surplus extraction

▲ @ ▶ ▲ ∃ ▶ ▲

3

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n

• • • • • • • • • • • •

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n
- For simplicity, assume n = 2 and that bidders are symmetric
- Bidder *i*'s valuation is V_i,

▲ □ ► ▲ □ ► ▲

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n
- For simplicity, assume n = 2 and that bidders are symmetric
- Bidder i's valuation is V_i , information signal is X_i

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n
- For simplicity, assume n = 2 and that bidders are symmetric
- Bidder i's valuation is V_i , information signal is X_i
- Each X_i takes values in a finite number X, |X| = m

< □ > < 同 > < 三 > < 三

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n
- For simplicity, assume n = 2 and that bidders are symmetric
- Bidder *i*'s valuation is V_i , information signal is X_i
- Each X_i takes values in a finite number X, |X| = m
- *i*'s exp. valuation, $v_i(X_i, X_j)$, is a function of signals X_i, X_j

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n
- For simplicity, assume n = 2 and that bidders are symmetric
- Bidder *i*'s valuation is V_i , information signal is X_i
- Each X_i takes values in a finite number X, |X| = m
- *i*'s exp. valuation, $v_i(X_i, X_j)$, is a function of signals X_i, X_j
- Joint probability distribution P over (X_1, X_2)

- Single indivisible object
- *n* risk-neutral buyers or bidders, i = 1, 2, ..., n
- For simplicity, assume n = 2 and that bidders are symmetric
- Bidder *i*'s valuation is V_i , information signal is X_i
- Each X_i takes values in a finite number X, |X| = m
- *i*'s exp. valuation, $v_i(X_i, X_j)$, is a function of signals X_i, X_j
- Joint probability distribution P over (X_1, X_2)
- All this is common knowledge

・ロト ・ 日 ・ ・ ヨ ・

Model (continued)

- From P define a matrix of conditional probabilities, P_1
- P_1 is a $m \times m$ matrix with elements $\Pr(x_2|x_1)$, $x_1, x_2 \in \mathsf{X}$
- Each row of P_1 is a conditional probability distribution of X_2 given X_1
- P₂ is similarly defined

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Model (continued)

- From P define a matrix of conditional probabilities, P_1
- P_1 is a $m \times m$ matrix with elements $\Pr(x_2|x_1)$, $x_1, x_2 \in \mathsf{X}$
- Each row of P_1 is a conditional probability distribution of X_2 given X_1
- P₂ is similarly defined
- Assumption: P₁ and P₂ are full-rank matrices
- Assumption: Single-crossing condition is satisfied

 $u_1(x_1) \equiv$ buyer 1's expected surplus in second-price auction when $X_1 = x_1$

3

 $u_1(x_1) \equiv$ buyer 1's expected surplus in second-price auction when $X_1 = x_1$ Let \mathbf{u}_1 be an *m* vector of the $u_1(x_1)$'s.

 $u_1(x_1) \equiv$ buyer 1's expected surplus in second-price auction when $X_1 = x_1$ Let **u**₁ be an *m* vector of the $u_1(x_1)$'s.

As P_1 has full rank, there exists a m vector \mathbf{c}_1 such that $P_1\mathbf{c}_1 = \mathbf{u}_1$

 $u_1(x_1) \equiv$ buyer 1's expected surplus in second-price auction when $X_1 = x_1$ Let **u**₁ be an *m* vector of the $u_1(x_1)$'s.

As P_1 has full rank, there exists a *m* vector \mathbf{c}_1 such that

 $P_1\mathbf{c_1} = \mathbf{u_1}$

That is, for all $x_1 \in X$,

$$\sum_{x_2 \in \mathsf{X}} \Pr(x_2 | x_1) c_1(x_2) = u_1(x_1)$$

イロト イヨト イヨト イヨト

 $u_1(x_1) \equiv$ buyer 1's expected surplus in second-price auction when $X_1 = x_1$ Let **u**₁ be an *m* vector of the $u_1(x_1)$'s.

As P_1 has full rank, there exists a *m* vector \mathbf{c}_1 such that

 $P_1\mathbf{c_1} = \mathbf{u_1}$

That is, for all $x_1 \in X$,

$$\sum_{x_2 \in \mathsf{X}} \mathsf{Pr}(x_2 | x_1) c_1(x_2) = u_1(x_1)$$

 c_2 is defined similarly

イロト イヨト イヨト イヨト

A second-price auction plus the payments c_i is an optimal mechanism – maximizes efficiency *and* revenue

• • • • • • • • • • • •

A second-price auction plus the payments c_i is an optimal mechanism – maximizes efficiency *and* revenue

It is incentive compatible because c_1 does not depend on x_1 and c_2 does not depend on x_2

A second-price auction plus the payments c_i is an optimal mechanism – maximizes efficiency *and* revenue

It is incentive compatible because c_1 does not depend on x_1 and c_2 does not depend on x_2

It is efficient as single-crossing is satisfied

A second-price auction plus the payments c_i is an optimal mechanism – maximizes efficiency *and* revenue

It is incentive compatible because c_1 does not depend on x_1 and c_2 does not depend on x_2

It is efficient as single-crossing is satisfied

It is revenue-maximizing because buyer expected surplus is zero:

A second-price auction plus the payments c_i is an optimal mechanism – maximizes efficiency *and* revenue

It is incentive compatible because c_1 does not depend on x_1 and c_2 does not depend on x_2

It is efficient as single-crossing is satisfied

It is revenue-maximizing because buyer expected surplus is zero:

At $X_1 = x_1$, for any $x_1 \in X$, buyer 1's expected surplus is

$$u_1(x_1) - \sum_{x_2 \in X} \Pr(x_2|x_1)c_1(x_2) = u_1(x_1) - u_1(x_1) = 0$$

Two buyers with types $X_1, X_2 \in \{0, 1\}$ and values $V_i = X_i$.

・ロト ・四ト ・ヨト ・ヨト

Two buyers with types $X_1, X_2 \in \{0, 1\}$ and values $V_i = X_i$.

$$P = \begin{bmatrix} \Pr(0,0) & \Pr(0,1) \\ \Pr(1,0) & \Pr(1,1) \end{bmatrix} = \begin{bmatrix} 0.375 & 0.125 \\ 0.125 & 0.375 \end{bmatrix}$$

・ロト ・四ト ・ヨト ・ヨト

Two buyers with types $X_1, X_2 \in \{0, 1\}$ and values $V_i = X_i$.

$$P = \begin{bmatrix} \Pr(0,0) & \Pr(0,1) \\ \Pr(1,0) & \Pr(1,1) \end{bmatrix} = \begin{bmatrix} 0.375 & 0.125 \\ 0.125 & 0.375 \end{bmatrix}$$
$$P_i = \begin{bmatrix} \Pr(0|0) & \Pr(0|1) \\ \Pr(1|0) & \Pr(1|1) \end{bmatrix} = \begin{bmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{bmatrix}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Efficient allocation rule: $Q(X_1, X_2) = (\text{prob } 1 \text{ gets it, prob } 2 \text{ gets it})$

$$Q(X_1, X_2) = \begin{bmatrix} (0,0) & (0,1) \\ (1,0) & (0.5,0.5) \end{bmatrix}$$

Efficient allocation rule: $Q(X_1, X_2) = (\text{prob } 1 \text{ gets it}, \text{ prob } 2 \text{ gets it})$

$$Q(X_1, X_2) = \begin{bmatrix} (0,0) & (0,1) \\ (1,0) & (0.5,0.5) \end{bmatrix}$$

Buyer's exp. surplus in second-price auction: $u_i = (0, 0.25)$

Efficient allocation rule: $Q(X_1, X_2) = (\text{prob } 1 \text{ gets it}, \text{ prob } 2 \text{ gets it})$

$$Q(X_1, X_2) = \begin{bmatrix} (0,0) & (0,1) \\ (1,0) & (0.5,0.5) \end{bmatrix}$$

Buyer's exp. surplus in second-price auction: $u_i = (0, 0.25)$ Select $c_i = (-0.125, 0.375)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Efficient allocation rule: $Q(X_1, X_2) = (\text{prob } 1 \text{ gets it}, \text{ prob } 2 \text{ gets it})$

$$Q(X_1, X_2) = \begin{bmatrix} (0,0) & (0,1) \\ (1,0) & (0.5,0.5) \end{bmatrix}$$

Buyer's exp. surplus in second-price auction: $\mathbf{u}_{i} = (0, 0.25)$ Select $\mathbf{c}_{i} = (-0.125, 0.375)$. $\mathbf{u}_{i} - P_{i}\mathbf{c}_{i} = \begin{pmatrix} 0 - [(0.75)(-0.125) + (0.25)(0.375)] \\ 0.25 - [(0.25)(-0.125) + (0.75)(0.375)] \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

Caveats

The optimal mechanism is

- Is not detail free
- Not ex post individually rational
- Does not work with limited liability

• • • • • • • • • • • •